AI 工具包中的跟蹤
AI 工具包提供跟蹤功能,幫助您監控和分析 AI 應用程式的效能。您可以跟蹤 AI 應用程式的執行情況,包括與生成式 AI 模型的互動,從而深入瞭解其行為和效能。
AI 工具包託管本地 HTTP 和 gRPC 伺服器以收集跟蹤資料。收集器伺服器與 OTLP(OpenTelemetry 協議)相容,大多數語言模型 SDK 都直接支援 OTLP,或者有非 Microsoft 的檢測庫來支援它。使用 AI 工具包視覺化收集的檢測資料。
所有支援 OTLP 並遵循 生成式 AI 系統的語義約定的框架或 SDK 都受支援。下表包含經過相容性測試的常用 AI SDK。
| Azure AI 推理 | Foundry Agent Service | Anthropic | Gemini | LangChain | OpenAI SDK 3 | OpenAI Agents SDK | |
|---|---|---|---|---|---|---|---|
| Python | ✅ | ✅ | ✅ (traceloop,monocle)1,2 | ✅ (monocle) | ✅ (LangSmith,monocle)1,2 | ✅ (opentelemetry-python-contrib,monocle)1 | ✅ (Logfire,monocle)1,2 |
| TS/JS | ✅ | ✅ | ✅ (traceloop)1,2 | ❌ | ✅ (traceloop)1,2 | ✅ (traceloop)1,2 | ❌ |
如何開始跟蹤
-
透過在樹狀檢視中選擇“**跟蹤**”來開啟跟蹤 Web 檢視。
-
選擇“**啟動收集器**”按鈕以啟動本地 OTLP 跟蹤收集器伺服器。

-
使用程式碼片段啟用檢測。有關不同語言和 SDK 的程式碼片段,請參閱“設定檢測”部分。
-
透過執行應用程式生成跟蹤資料。
-
在跟蹤 Web 檢視中,選擇“**重新整理**”按鈕以檢視新的跟蹤資料。

設定檢測
在 AI 應用程式中設定跟蹤以收集跟蹤資料。以下程式碼片段展示瞭如何為不同的 SDK 和語言設定跟蹤。
所有 SDK 的過程相似。
- 向 LLM 或代理應用程式新增跟蹤。
- 設定 OTLP 跟蹤匯出器以使用 AITK 本地收集器。
Azure AI 推理 SDK - Python
安裝
pip install opentelemetry-sdk opentelemetry-exporter-otlp-proto-http azure-ai-inference[opentelemetry]
設定
import os
os.environ["AZURE_TRACING_GEN_AI_CONTENT_RECORDING_ENABLED"] = "true"
os.environ["AZURE_SDK_TRACING_IMPLEMENTATION"] = "opentelemetry"
from opentelemetry import trace, _events
from opentelemetry.sdk.resources import Resource
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from opentelemetry.sdk._logs import LoggerProvider
from opentelemetry.sdk._logs.export import BatchLogRecordProcessor
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk._events import EventLoggerProvider
from opentelemetry.exporter.otlp.proto.http._log_exporter import OTLPLogExporter
resource = Resource(attributes={
"service.name": "opentelemetry-instrumentation-azure-ai-agents"
})
provider = TracerProvider(resource=resource)
otlp_exporter = OTLPSpanExporter(
endpoint="https://:4318/v1/traces",
)
processor = BatchSpanProcessor(otlp_exporter)
provider.add_span_processor(processor)
trace.set_tracer_provider(provider)
logger_provider = LoggerProvider(resource=resource)
logger_provider.add_log_record_processor(
BatchLogRecordProcessor(OTLPLogExporter(endpoint="https://:4318/v1/logs"))
)
_events.set_event_logger_provider(EventLoggerProvider(logger_provider))
from azure.ai.inference.tracing import AIInferenceInstrumentor
AIInferenceInstrumentor().instrument(True)
Azure AI 推理 SDK - TypeScript/JavaScript
安裝
npm install @azure/opentelemetry-instrumentation-azure-sdk @opentelemetry/api @opentelemetry/exporter-trace-otlp-proto @opentelemetry/instrumentation @opentelemetry/resources @opentelemetry/sdk-trace-node
設定
const { context } = require('@opentelemetry/api');
const { resourceFromAttributes } = require('@opentelemetry/resources');
const {
NodeTracerProvider,
SimpleSpanProcessor
} = require('@opentelemetry/sdk-trace-node');
const { OTLPTraceExporter } = require('@opentelemetry/exporter-trace-otlp-proto');
const exporter = new OTLPTraceExporter({
url: 'https://:4318/v1/traces'
});
const provider = new NodeTracerProvider({
resource: resourceFromAttributes({
'service.name': 'opentelemetry-instrumentation-azure-ai-inference'
}),
spanProcessors: [new SimpleSpanProcessor(exporter)]
});
provider.register();
const { registerInstrumentations } = require('@opentelemetry/instrumentation');
const {
createAzureSdkInstrumentation
} = require('@azure/opentelemetry-instrumentation-azure-sdk');
registerInstrumentations({
instrumentations: [createAzureSdkInstrumentation()]
});
Foundry Agent Service - Python
安裝
pip install opentelemetry-sdk opentelemetry-exporter-otlp-proto-http azure-ai-inference[opentelemetry]
設定
import os
os.environ["AZURE_TRACING_GEN_AI_CONTENT_RECORDING_ENABLED"] = "true"
os.environ["AZURE_SDK_TRACING_IMPLEMENTATION"] = "opentelemetry"
from opentelemetry import trace, _events
from opentelemetry.sdk.resources import Resource
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from opentelemetry.sdk._logs import LoggerProvider
from opentelemetry.sdk._logs.export import BatchLogRecordProcessor
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk._events import EventLoggerProvider
from opentelemetry.exporter.otlp.proto.http._log_exporter import OTLPLogExporter
resource = Resource(attributes={
"service.name": "opentelemetry-instrumentation-azure-ai-agents"
})
provider = TracerProvider(resource=resource)
otlp_exporter = OTLPSpanExporter(
endpoint="https://:4318/v1/traces",
)
processor = BatchSpanProcessor(otlp_exporter)
provider.add_span_processor(processor)
trace.set_tracer_provider(provider)
logger_provider = LoggerProvider(resource=resource)
logger_provider.add_log_record_processor(
BatchLogRecordProcessor(OTLPLogExporter(endpoint="https://:4318/v1/logs"))
)
_events.set_event_logger_provider(EventLoggerProvider(logger_provider))
from azure.ai.agents.telemetry import AIAgentsInstrumentor
AIAgentsInstrumentor().instrument(True)
Foundry Agent Service - TypeScript/JavaScript
安裝
npm install @azure/opentelemetry-instrumentation-azure-sdk @opentelemetry/api @opentelemetry/exporter-trace-otlp-proto @opentelemetry/instrumentation @opentelemetry/resources @opentelemetry/sdk-trace-node
設定
const { context } = require('@opentelemetry/api');
const { resourceFromAttributes } = require('@opentelemetry/resources');
const {
NodeTracerProvider,
SimpleSpanProcessor
} = require('@opentelemetry/sdk-trace-node');
const { OTLPTraceExporter } = require('@opentelemetry/exporter-trace-otlp-proto');
const exporter = new OTLPTraceExporter({
url: 'https://:4318/v1/traces'
});
const provider = new NodeTracerProvider({
resource: resourceFromAttributes({
'service.name': 'opentelemetry-instrumentation-azure-ai-inference'
}),
spanProcessors: [new SimpleSpanProcessor(exporter)]
});
provider.register();
const { registerInstrumentations } = require('@opentelemetry/instrumentation');
const {
createAzureSdkInstrumentation
} = require('@azure/opentelemetry-instrumentation-azure-sdk');
registerInstrumentations({
instrumentations: [createAzureSdkInstrumentation()]
});
Anthropic - Python
OpenTelemetry
安裝
pip install opentelemetry-sdk opentelemetry-exporter-otlp-proto-http opentelemetry-instrumentation-anthropic
設定
from opentelemetry import trace, _events
from opentelemetry.sdk.resources import Resource
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from opentelemetry.sdk._logs import LoggerProvider
from opentelemetry.sdk._logs.export import BatchLogRecordProcessor
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk._events import EventLoggerProvider
from opentelemetry.exporter.otlp.proto.http._log_exporter import OTLPLogExporter
resource = Resource(attributes={
"service.name": "opentelemetry-instrumentation-anthropic-traceloop"
})
provider = TracerProvider(resource=resource)
otlp_exporter = OTLPSpanExporter(
endpoint="https://:4318/v1/traces",
)
processor = BatchSpanProcessor(otlp_exporter)
provider.add_span_processor(processor)
trace.set_tracer_provider(provider)
logger_provider = LoggerProvider(resource=resource)
logger_provider.add_log_record_processor(
BatchLogRecordProcessor(OTLPLogExporter(endpoint="https://:4318/v1/logs"))
)
_events.set_event_logger_provider(EventLoggerProvider(logger_provider))
from opentelemetry.instrumentation.anthropic import AnthropicInstrumentor
AnthropicInstrumentor().instrument()
Monocle
安裝
pip install opentelemetry-sdk opentelemetry-exporter-otlp-proto-http monocle_apptrace
設定
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
# Import monocle_apptrace
from monocle_apptrace import setup_monocle_telemetry
# Setup Monocle telemetry with OTLP span exporter for traces
setup_monocle_telemetry(
workflow_name="opentelemetry-instrumentation-anthropic",
span_processors=[
BatchSpanProcessor(
OTLPSpanExporter(endpoint="https://:4318/v1/traces")
)
]
)
Anthropic - TypeScript/JavaScript
安裝
npm install @traceloop/node-server-sdk
設定
const { initialize } = require('@traceloop/node-server-sdk');
const { trace } = require('@opentelemetry/api');
initialize({
appName: 'opentelemetry-instrumentation-anthropic-traceloop',
baseUrl: 'https://:4318',
disableBatch: true
});
Google Gemini - Python
OpenTelemetry
安裝
pip install opentelemetry-sdk opentelemetry-exporter-otlp-proto-http opentelemetry-instrumentation-google-genai
設定
from opentelemetry import trace, _events
from opentelemetry.sdk.resources import Resource
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from opentelemetry.sdk._logs import LoggerProvider
from opentelemetry.sdk._logs.export import BatchLogRecordProcessor
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk._events import EventLoggerProvider
from opentelemetry.exporter.otlp.proto.http._log_exporter import OTLPLogExporter
resource = Resource(attributes={
"service.name": "opentelemetry-instrumentation-google-genai"
})
provider = TracerProvider(resource=resource)
otlp_exporter = OTLPSpanExporter(
endpoint="https://:4318/v1/traces",
)
processor = BatchSpanProcessor(otlp_exporter)
provider.add_span_processor(processor)
trace.set_tracer_provider(provider)
logger_provider = LoggerProvider(resource=resource)
logger_provider.add_log_record_processor(
BatchLogRecordProcessor(OTLPLogExporter(endpoint="https://:4318/v1/logs"))
)
_events.set_event_logger_provider(EventLoggerProvider(logger_provider))
from opentelemetry.instrumentation.google_genai import GoogleGenAiSdkInstrumentor
GoogleGenAiSdkInstrumentor().instrument(enable_content_recording=True)
Monocle
安裝
pip install opentelemetry-sdk opentelemetry-exporter-otlp-proto-http monocle_apptrace
設定
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
# Import monocle_apptrace
from monocle_apptrace import setup_monocle_telemetry
# Setup Monocle telemetry with OTLP span exporter for traces
setup_monocle_telemetry(
workflow_name="opentelemetry-instrumentation-google-genai",
span_processors=[
BatchSpanProcessor(
OTLPSpanExporter(endpoint="https://:4318/v1/traces")
)
]
)
LangChain - Python
LangSmith
安裝
pip install langsmith[otel]
設定
import os
os.environ["LANGSMITH_OTEL_ENABLED"] = "true"
os.environ["LANGSMITH_TRACING"] = "true"
os.environ["OTEL_EXPORTER_OTLP_ENDPOINT"] = "https://:4318"
Monocle
安裝
pip install opentelemetry-sdk opentelemetry-exporter-otlp-proto-http monocle_apptrace
設定
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
# Import monocle_apptrace
from monocle_apptrace import setup_monocle_telemetry
# Setup Monocle telemetry with OTLP span exporter for traces
setup_monocle_telemetry(
workflow_name="opentelemetry-instrumentation-langchain",
span_processors=[
BatchSpanProcessor(
OTLPSpanExporter(endpoint="https://:4318/v1/traces")
)
]
)
LangChain - TypeScript/JavaScript
安裝
npm install @traceloop/node-server-sdk
設定
const { initialize } = require('@traceloop/node-server-sdk');
initialize({
appName: 'opentelemetry-instrumentation-langchain-traceloop',
baseUrl: 'https://:4318',
disableBatch: true
});
OpenAI - Python
OpenTelemetry
安裝
pip install opentelemetry-sdk opentelemetry-exporter-otlp-proto-http opentelemetry-instrumentation-openai-v2
設定
from opentelemetry import trace, _events
from opentelemetry.sdk.resources import Resource
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from opentelemetry.sdk._logs import LoggerProvider
from opentelemetry.sdk._logs.export import BatchLogRecordProcessor
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk._events import EventLoggerProvider
from opentelemetry.exporter.otlp.proto.http._log_exporter import OTLPLogExporter
from opentelemetry.instrumentation.openai_v2 import OpenAIInstrumentor
import os
os.environ["OTEL_INSTRUMENTATION_GENAI_CAPTURE_MESSAGE_CONTENT"] = "true"
# Set up resource
resource = Resource(attributes={
"service.name": "opentelemetry-instrumentation-openai"
})
# Create tracer provider
trace.set_tracer_provider(TracerProvider(resource=resource))
# Configure OTLP exporter
otlp_exporter = OTLPSpanExporter(
endpoint="https://:4318/v1/traces"
)
# Add span processor
trace.get_tracer_provider().add_span_processor(
BatchSpanProcessor(otlp_exporter)
)
# Set up logger provider
logger_provider = LoggerProvider(resource=resource)
logger_provider.add_log_record_processor(
BatchLogRecordProcessor(OTLPLogExporter(endpoint="https://:4318/v1/logs"))
)
_events.set_event_logger_provider(EventLoggerProvider(logger_provider))
# Enable OpenAI instrumentation
OpenAIInstrumentor().instrument()
Monocle
安裝
pip install opentelemetry-sdk opentelemetry-exporter-otlp-proto-http monocle_apptrace
設定
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
# Import monocle_apptrace
from monocle_apptrace import setup_monocle_telemetry
# Setup Monocle telemetry with OTLP span exporter for traces
setup_monocle_telemetry(
workflow_name="opentelemetry-instrumentation-openai",
span_processors=[
BatchSpanProcessor(
OTLPSpanExporter(endpoint="https://:4318/v1/traces")
)
]
)
OpenAI - TypeScript/JavaScript
安裝
npm install @traceloop/instrumentation-openai @traceloop/node-server-sdk
設定
const { initialize } = require('@traceloop/node-server-sdk');
initialize({
appName: 'opentelemetry-instrumentation-openai-traceloop',
baseUrl: 'https://:4318',
disableBatch: true
});
OpenAI Agents SDK - Python
Logfire
安裝
pip install logfire
設定
import logfire
import os
os.environ["OTEL_EXPORTER_OTLP_TRACES_ENDPOINT"] = "https://:4318/v1/traces"
logfire.configure(
service_name="opentelemetry-instrumentation-openai-agents-logfire",
send_to_logfire=False,
)
logfire.instrument_openai_agents()
Monocle
安裝
pip install opentelemetry-sdk opentelemetry-exporter-otlp-proto-http monocle_apptrace
設定
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
# Import monocle_apptrace
from monocle_apptrace import setup_monocle_telemetry
# Setup Monocle telemetry with OTLP span exporter for traces
setup_monocle_telemetry(
workflow_name="opentelemetry-instrumentation-openai-agents",
span_processors=[
BatchSpanProcessor(
OTLPSpanExporter(endpoint="https://:4318/v1/traces")
)
]
)
示例 1:使用 Opentelemetry 透過 Azure AI 推理 SDK 設定跟蹤
以下端到端示例使用 Python 中的 Azure AI 推理 SDK,並展示瞭如何設定跟蹤提供程式和檢測。
先決條件
要執行此示例,您需要以下先決條件:
設定您的開發環境
使用以下說明部署一個預配置的開發環境,其中包含執行此示例所需的所有依賴項。
-
設定 GitHub 個人訪問令牌
使用免費的 GitHub Models 作為示例模型。
開啟 GitHub 開發人員設定並選擇“**生成新令牌**”。
重要令牌需要
models:read許可權,否則將返回未經授權。令牌將傳送到 Microsoft 服務。 -
建立環境變數
建立一個環境變數,使用以下程式碼片段之一將您的令牌設定為客戶端程式碼的金鑰。將
<your-github-token-goes-here>替換為您實際的 GitHub 令牌。bash
export GITHUB_TOKEN="<your-github-token-goes-here>"powershell
$Env:GITHUB_TOKEN="<your-github-token-goes-here>"Windows 命令提示符
set GITHUB_TOKEN=<your-github-token-goes-here> -
安裝 Python 包
以下命令將安裝使用 Azure AI 推理 SDK 進行跟蹤所需的 Python 包。
pip install opentelemetry-sdk opentelemetry-exporter-otlp-proto-http azure-ai-inference[opentelemetry] -
設定跟蹤
-
在計算機上為專案建立一個新的本地目錄。
mkdir my-tracing-app -
導航到您建立的目錄。
cd my-tracing-app -
在該目錄中開啟 Visual Studio Code。
code .
-
-
建立 Python 檔案
-
在
my-tracing-app目錄中,建立一個名為main.py的 Python 檔案。您將在此處新增設定跟蹤和與 Azure AI 推理 SDK 互動的程式碼。
-
將以下程式碼新增到
main.py並儲存檔案。import os ### Set up for OpenTelemetry tracing ### os.environ["AZURE_TRACING_GEN_AI_CONTENT_RECORDING_ENABLED"] = "true" os.environ["AZURE_SDK_TRACING_IMPLEMENTATION"] = "opentelemetry" from opentelemetry import trace, _events from opentelemetry.sdk.resources import Resource from opentelemetry.sdk.trace import TracerProvider from opentelemetry.sdk.trace.export import BatchSpanProcessor from opentelemetry.sdk._logs import LoggerProvider from opentelemetry.sdk._logs.export import BatchLogRecordProcessor from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter from opentelemetry.sdk._events import EventLoggerProvider from opentelemetry.exporter.otlp.proto.http._log_exporter import OTLPLogExporter github_token = os.environ["GITHUB_TOKEN"] resource = Resource(attributes={ "service.name": "opentelemetry-instrumentation-azure-ai-inference" }) provider = TracerProvider(resource=resource) otlp_exporter = OTLPSpanExporter( endpoint="https://:4318/v1/traces", ) processor = BatchSpanProcessor(otlp_exporter) provider.add_span_processor(processor) trace.set_tracer_provider(provider) logger_provider = LoggerProvider(resource=resource) logger_provider.add_log_record_processor( BatchLogRecordProcessor(OTLPLogExporter(endpoint="https://:4318/v1/logs")) ) _events.set_event_logger_provider(EventLoggerProvider(logger_provider)) from azure.ai.inference.tracing import AIInferenceInstrumentor AIInferenceInstrumentor().instrument() ### Set up for OpenTelemetry tracing ### from azure.ai.inference import ChatCompletionsClient from azure.ai.inference.models import UserMessage from azure.ai.inference.models import TextContentItem from azure.core.credentials import AzureKeyCredential client = ChatCompletionsClient( endpoint = "https://models.inference.ai.azure.com", credential = AzureKeyCredential(github_token), api_version = "2024-08-01-preview", ) response = client.complete( messages = [ UserMessage(content = [ TextContentItem(text = "hi"), ]), ], model = "gpt-4.1", tools = [], response_format = "text", temperature = 1, top_p = 1, ) print(response.choices[0].message.content)
-
-
執行程式碼
-
在 Visual Studio Code 中開啟一個新終端。
-
在終端中,使用命令
python main.py執行程式碼。
-
-
在 AI 工具包中檢查跟蹤資料
執行程式碼並重新整理跟蹤 Web 檢視後,列表中會出現一個新的跟蹤。
選擇跟蹤以開啟跟蹤詳細資訊 Web 檢視。

在左側的 span 樹狀檢視中檢視應用程式的完整執行流程。
選擇右側的 span 詳細資訊檢視中的 span,然後在“**輸入 + 輸出**”選項卡中檢視生成式 AI 訊息。
選擇“**元資料**”選項卡以檢視原始元資料。

示例 2:使用 Monocle 透過 OpenAI Agents SDK 設定跟蹤
以下端到端示例在 Python 中使用 OpenAI Agents SDK 和 Monocle,並展示瞭如何為多代理旅行預訂系統設定跟蹤。
先決條件
要執行此示例,您需要以下先決條件:
- Visual Studio Code
- AI 工具包擴充套件
- Okahu Trace Visualizer
- OpenAI Agents SDK
- OpenTelemetry
- Monocle
- Python 最新版本
- OpenAI API 金鑰
設定您的開發環境
使用以下說明部署一個預配置的開發環境,其中包含執行此示例所需的所有依賴項。
-
建立環境變數
使用以下程式碼片段之一為您的 OpenAI API 金鑰建立環境變數。將
<your-openai-api-key>替換為您實際的 OpenAI API 金鑰。bash
export OPENAI_API_KEY="<your-openai-api-key>"powershell
$Env:OPENAI_API_KEY="<your-openai-api-key>"Windows 命令提示符
set OPENAI_API_KEY=<your-openai-api-key>或者,在您的專案目錄中建立一個
.env檔案。OPENAI_API_KEY=<your-openai-api-key> -
安裝 Python 包
建立具有以下內容的
requirements.txt檔案。opentelemetry-sdk opentelemetry-exporter-otlp-proto-http monocle_apptrace openai-agents python-dotenv使用以下命令安裝包:
pip install -r requirements.txt -
設定跟蹤
-
在計算機上為專案建立一個新的本地目錄。
mkdir my-agents-tracing-app -
導航到您建立的目錄。
cd my-agents-tracing-app -
在該目錄中開啟 Visual Studio Code。
code .
-
-
建立 Python 檔案
-
在
my-agents-tracing-app目錄中,建立一個名為main.py的 Python 檔案。您將在此處新增使用 Monocle 設定跟蹤和與 OpenAI Agents SDK 互動的程式碼。
-
將以下程式碼新增到
main.py並儲存檔案。import os from dotenv import load_dotenv # Load environment variables from .env file load_dotenv() from opentelemetry.sdk.trace.export import BatchSpanProcessor from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter # Import monocle_apptrace from monocle_apptrace import setup_monocle_telemetry # Setup Monocle telemetry with OTLP span exporter for traces setup_monocle_telemetry( workflow_name="opentelemetry-instrumentation-openai-agents", span_processors=[ BatchSpanProcessor( OTLPSpanExporter(endpoint="https://:4318/v1/traces") ) ] ) from agents import Agent, Runner, function_tool # Define tool functions @function_tool def book_flight(from_airport: str, to_airport: str) -> str: """Book a flight between airports.""" return f"Successfully booked a flight from {from_airport} to {to_airport} for 100 USD." @function_tool def book_hotel(hotel_name: str, city: str) -> str: """Book a hotel reservation.""" return f"Successfully booked a stay at {hotel_name} in {city} for 50 USD." @function_tool def get_weather(city: str) -> str: """Get weather information for a city.""" return f"The weather in {city} is sunny and 75°F." # Create specialized agents flight_agent = Agent( name="Flight Agent", instructions="You are a flight booking specialist. Use the book_flight tool to book flights.", tools=[book_flight], ) hotel_agent = Agent( name="Hotel Agent", instructions="You are a hotel booking specialist. Use the book_hotel tool to book hotels.", tools=[book_hotel], ) weather_agent = Agent( name="Weather Agent", instructions="You are a weather information specialist. Use the get_weather tool to provide weather information.", tools=[get_weather], ) # Create a coordinator agent with tools coordinator = Agent( name="Travel Coordinator", instructions="You are a travel coordinator. Delegate flight bookings to the Flight Agent, hotel bookings to the Hotel Agent, and weather queries to the Weather Agent.", tools=[ flight_agent.as_tool( tool_name="flight_expert", tool_description="Handles flight booking questions and requests.", ), hotel_agent.as_tool( tool_name="hotel_expert", tool_description="Handles hotel booking questions and requests.", ), weather_agent.as_tool( tool_name="weather_expert", tool_description="Handles weather information questions and requests.", ), ], ) # Run the multi-agent workflow if __name__ == "__main__": import asyncio result = asyncio.run( Runner.run( coordinator, "Book me a flight today from SEA to SFO, then book the best hotel there and tell me the weather.", ) ) print(result.final_output)
-
-
執行程式碼
-
在 Visual Studio Code 中開啟一個新終端。
-
在終端中,使用命令
python main.py執行程式碼。
-
-
在 AI 工具包中檢查跟蹤資料
執行程式碼並重新整理跟蹤 Web 檢視後,列表中會出現一個新的跟蹤。
選擇跟蹤以開啟跟蹤詳細資訊 Web 檢視。

在左側的 span 樹狀檢視中,檢視應用程式的完整執行流程,包括代理呼叫、工具呼叫和代理委託。
選擇右側的 span 詳細資訊檢視中的 span,然後在“**輸入 + 輸出**”選項卡中檢視生成式 AI 訊息。
選擇“**元資料**”選項卡以檢視原始元資料。

您學到了什麼
在本文中,您學習瞭如何
- 使用 Azure AI 推理 SDK 和 OpenTelemetry 在 AI 應用程式中設定跟蹤。
- 配置 OTLP 跟蹤匯出器,將跟蹤資料傳送到本地收集器伺服器。
- 執行您的應用程式以生成跟蹤資料,並在 AI 工具包 Web 檢視中檢視跟蹤。
- 使用多種 SDK 和語言(包括 Python 和 TypeScript/JavaScript)以及透過 OTLP 的非 Microsoft 工具來使用跟蹤功能。
- 使用提供的程式碼片段檢測各種 AI 框架(Anthropic、Gemini、LangChain、OpenAI 等)。
- 使用跟蹤 Web 檢視 UI,包括“**啟動收集器**”和“**重新整理**”按鈕來管理跟蹤資料。
- 設定您的開發環境,包括環境變數和包安裝,以啟用跟蹤。
- 使用 span 樹狀圖和詳細資訊檢視分析應用程式的執行流程,包括生成式 AI 訊息流程和元資料。